A Finite Element Discretization of the Three-dimensional Navier–stokes Equations with Mixed Boundary Conditions

نویسندگان

  • Christine Bernardi
  • Frédéric Hecht
  • Rüdiger Verfürth
چکیده

We consider a variational formulation of the three-dimensional Navier–Stokes equations with mixed boundary conditions and prove that the variational problem admits a solution provided that the domain satisfies a suitable regularity assumption. Next, we propose a finite element discretization relying on the Galerkin method and establish a priori and a posteriori error estimates. Mathematics Subject Classification. 65N30, 65N15, 65J15. Received December 1st, 2008. Revised May 25, 2009. Published online August 21, 2009.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical methods for the Stokes and Navier-Stokes equations driven by threshold slip boundary conditions

In this article, we discuss the numerical solution of the Stokes and Navier-Stokes equations completed by nonlinear slip boundary conditions of friction type in two and three dimensions. To solve the Stokes system, we first reduce the related variational inequality into a saddle point-point problem for a well chosen augmented Lagrangian. To solve this saddle point problem we suggest an alternat...

متن کامل

Resolution of Unsteady Navier-stokes Equations with the〖 C〗_(a,b) Boundary condition

in this work, we introduce the unsteady incompressible Navier-Stokes equations with a new boundary condition, generalizes the Dirichlet and the Neumann conditions. Then we derive an adequate variational formulation of timedependent NavierStokes equations. We then prove the existence theorem and a uniqueness result. A Mixed finite-element discretization is used to generate the nonlinear system c...

متن کامل

A Posteriori Error Analysis of the Time Dependent Navier-stokes Equations with Mixed Boundary Conditions

In this paper we study the time dependent Navier-Stokes problem with mixed boundary conditions. The problem is discretized by the backward Euler’s scheme in time and finite elements in space. We establish optimal a posteriori error estimates with two types of computable error indicators, the first one being linked to the time discretization and the second one to the space discretization. We fin...

متن کامل

A new mixed FEM for the Stokes equations on complicated domains

We introduce a new finite element method, the composite mini element, for the mixed discretization of the Stokes equations on two and three-dimensional domains that may contain a huge number of geometric details. Instead of a geometric resolution of the domain and the boundary condition by the finite element mesh the shape of the finite element functions is adapted to the geometric details. Thi...

متن کامل

Stabilized finite element method for Navier-Stokes equations with physical boundary conditions

This paper deals with the numerical approximation of the 2D and 3D Navier-Stokes equations, satisfying nonstandard boundary conditions. This lays on the finite element discretisation of the corresponding Stokes problem, which is achieved through a three-fields stabilized mixed formulation. A priori and a posteriori error bounds are established for the nonlinear problem, ascertaining the converg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008